ephypype.interfaces.mne.InverseSolution¶
- class ephypype.interfaces.mne.InverseSolution(from_file=None, resource_monitor=None, ignore_exception=False, **inputs)[source]¶
Compute the inverse solution on raw or epoch data.
This class is considering N_r regions in source space based on a FreeSurfer cortical parcellation.
- Parameters:
- sbj_idstr
Subject name
- subjects_dirstr
Freesurfer directory
- raw_filenamestr
Filename of the raw data
- cov_filenamestr
Filename of the noise covariance matrix
- fwd_filenamestr
Filename of the forward operator
- is_epochedbool
If True and events_id = None the input data are epoch data in the format -epo.fif if True and events_id is not None, the raw data are epoched according to events_id and t_min and t_max values
- events_id: dict
The dict of events
- condition: list
List of events
- t_min, t_max: int (defualt None)
Define the time interval in which to epoch the raw data
- is_evoked: bool
If True the raw data will be averaged according to the events contained in the dict events_id
- is_ave: bool
If True the input data is an evoked dataset
- is_fixedbool
If True we use fixed orientation
- inv_methodstr
The inverse method to use; possible choices: MNE, dSPM, sLORETA
- snrfloat
The SNR value used to define the regularization parameter
- parc: str
The parcellation defining the ROIs atlas in the source space
- aseg: bool
If True a mixed source space will be created and the sub cortical regions defined in aseg_labels will be added to the source space
- aseg_labels: list
List of substructures we want to include in the mixed source space
- all_src_space: bool
If True we compute the inverse for all points of the s0urce space
- ROIs_mean: bool
If True we compute the mean of estimated time series on ROIs
- Returns:
- ts_filestr
Name of the .npy file with the estimated source time series
- labelsstr
Labels file in pickle format
- label_namesstr
Name of the .txt file with labels name
- label_coordsstr
Name of the .txt file with labels coordinates
- __init__(from_file=None, resource_monitor=None, ignore_exception=False, **inputs)¶
Subclasses must implement __init__
Methods
__init__
([from_file, resource_monitor, ...])Subclasses must implement __init__
aggregate_outputs
([runtime, needed_outputs])Collate expected outputs and apply output traits validation.
help
([returnhelp])Prints class help
load_inputs_from_json
(json_file[, overwrite])A convenient way to load pre-set inputs from a JSON file.
run
([cwd, ignore_exception])Execute this interface.
save_inputs_to_json
(json_file)A convenient way to save current inputs to a JSON file.
Attributes
always_run
Should the interface be always run even if the inputs were not changed? Only applies to interfaces being run within a workflow context.
can_resume
Defines if the interface can reuse partial results after interruption.
resource_monitor
version
interfaces should implement a version property