ephypype.interfaces.mne.InverseSolution

class ephypype.interfaces.mne.InverseSolution(from_file=None, resource_monitor=None, ignore_exception=False, **inputs)[source]

Compute the inverse solution on raw or epoch data.

This class is considering N_r regions in source space based on a FreeSurfer cortical parcellation.

Parameters:
sbj_idstr

Subject name

subjects_dirstr

Freesurfer directory

raw_filenamestr

Filename of the raw data

cov_filenamestr

Filename of the noise covariance matrix

fwd_filenamestr

Filename of the forward operator

is_epochedbool

If True and events_id = None the input data are epoch data in the format -epo.fif if True and events_id is not None, the raw data are epoched according to events_id and t_min and t_max values

events_id: dict

The dict of events

condition: list

List of events

t_min, t_max: int (defualt None)

Define the time interval in which to epoch the raw data

is_evoked: bool

If True the raw data will be averaged according to the events contained in the dict events_id

is_ave: bool

If True the input data is an evoked dataset

is_fixedbool

If True we use fixed orientation

inv_methodstr

The inverse method to use; possible choices: MNE, dSPM, sLORETA

snrfloat

The SNR value used to define the regularization parameter

parc: str

The parcellation defining the ROIs atlas in the source space

aseg: bool

If True a mixed source space will be created and the sub cortical regions defined in aseg_labels will be added to the source space

aseg_labels: list

List of substructures we want to include in the mixed source space

all_src_space: bool

If True we compute the inverse for all points of the s0urce space

ROIs_mean: bool

If True we compute the mean of estimated time series on ROIs

Returns:
ts_filestr

Name of the .npy file with the estimated source time series

labelsstr

Labels file in pickle format

label_namesstr

Name of the .txt file with labels name

label_coordsstr

Name of the .txt file with labels coordinates

__init__(from_file=None, resource_monitor=None, ignore_exception=False, **inputs)

Subclasses must implement __init__

Methods

__init__([from_file, resource_monitor, ...])

Subclasses must implement __init__

aggregate_outputs([runtime, needed_outputs])

Collate expected outputs and apply output traits validation.

help([returnhelp])

Prints class help

load_inputs_from_json(json_file[, overwrite])

A convenient way to load pre-set inputs from a JSON file.

run([cwd, ignore_exception])

Execute this interface.

save_inputs_to_json(json_file)

A convenient way to save current inputs to a JSON file.

Attributes

always_run

Should the interface be always run even if the inputs were not changed? Only applies to interfaces being run within a workflow context.

can_resume

Defines if the interface can reuse partial results after interruption.

resource_monitor

version

interfaces should implement a version property