ephypype.pipelines.create_pipeline_preproc_meeg¶
- ephypype.pipelines.create_pipeline_preproc_meeg(main_path, pipeline_name='preproc_meeg_pipeline', data_type='fif', l_freq=1, h_freq=150, down_sfreq=None, is_ICA=True, variance=None, n_components=None, ECG_ch_name='', EoG_ch_name='', reject=None, is_set_ICA_components=False, mapnode=False, n_comp_exclude=[], is_sensor_space=True, montage=None, misc=None, bipolar=None, ch_new_names=None)[source]¶
Preprocessing pipeline.
- Parameters:
- main_pathstr
main path to of the pipeline
- pipeline_name: str (default ‘preproc_meeg’)
name of the pipeline
- data_type: str (default ‘fif’)
data type: MEG (‘fif’, ‘ds’) or EEG (‘eeg’) data
- l_freq: float (default 1)
low cut-off frequency in Hz
- h_freq: float (default 150)
high cut-off frequency in Hz
- down_sfreq: float (default 300)
sampling frequency at which the data are downsampled
- is_ICAboolean (default True)
if True apply ICA to automatically remove ECG and EoG artifacts
- variance: float (default 0.95)
float between 0 and 1: the ICA components will be selected by the cumulative percentage of explained variance
- n_components: int
number of ICA components
- ECG_ch_name: str (default ‘’)
the name of ECG channels
- EoG_ch_name: str (default ‘’)
the name of EoG channels
- reject: dict | None
rejection parameters based on peak-to-peak amplitude. Valid keys are ‘grad’ | ‘mag’ | ‘eeg’ | ‘eog’ | ‘ecg’. If reject is None then no rejection is done
- is_set_ICA_components: boolean (default False)
set to True if we had the ICA of the raw data, checked the Report and want to exclude some ICA components based on their topographies and time series if True, we have to fill the dictionary variable n_comp_exclude
- n_comp_exclude: dict
if is_set_ICA_components=True, it has to be a dict containing for each subject and for each session the components to be excluded
- is_sensor_space: boolean (default True)
True if we perform the analysis in sensor space and we use the pipeline as lego with the connectivity or inverse pipeline
- raw_file (inputnode): str
path to raw meg data in fif format
- subject_id (inputnode): str
subject id
- Returns:
- pipelineinstance of Workflow