ephypype.pipelines.create_pipeline_time_series_to_spectral_connectivity¶
- ephypype.pipelines.create_pipeline_time_series_to_spectral_connectivity(main_path, pipeline_name='ts_to_conmat', con_method='coh', multi_con=False, export_to_matlab=False, n_windows=[], mode='multitaper', is_sensor_space=True, epoch_window_length=None, gathering_method='mean')[source]¶
Connectivity pipeline.
Compute spectral connectivity in a given frequency bands.
- Parameters:
- main_pathstr
the main path of the pipeline
- pipeline_name: str (default ‘ts_to_conmat’)
name of the pipeline
- con_methodstr
metric computed on time series for connectivity; possible choice: “coh”,”imcoh”,”plv”,”pli”,”wpli”,”pli2_unbiased”,”ppc”,”cohy”, “wpli2_debiased”
- multi_conbool (default False)
True if multiple connectivity matrices are exported
- export_to_matlabbool (default False)
True if conmat is exported to .mat format as well
- n_windowslist
list of start and stop points (tuple of two integers) of temporal windows
- modestr (default ‘multipaper’)
mode for computing frequency bands; possible choice: “multitaper”, “cwt_morlet”
- epoch_window_lengthfloat
epoched data
- is_sensor_spacebool (default True)
True if we compute connectivity on sensor space
- gather_methodstr (default “mean”)
how to handle the values over the frequency bands: possible choices: “mean”,”max”, “none”
- ts_file (inputnode): str
path to the time series file in .npy format
- freq_band (inputnode): float
frequency bands
- sfreq (inputnode): float
sampling frequency
- labels_file (inputnode): str
path to the file containing a list of labels associated with nodes
- Returns:
- pipelineinstance of Workflow